Function Composition

Defining Composite Functions: h(x) = g(f(x))

$$h(x) = (g \circ f)(x)$$

Read as:

Ex.
$$f(x) = 3x$$
 and $g(x) = x^2 + x$

Find
$$(f \circ g)(2)$$

$$(f \circ g)(x)$$

$$(f \circ g)(2x+1)$$

Consider the functions $f(x) = \sqrt{x-3}$ and $g(x) = x^2 + 2$.

Find
$$(f \circ g)(x)$$

$$(f \circ g)(2)$$

$$(g \circ f)(x)$$

$$(g \circ f)(4)$$

What is the domain and range of $(f \circ g)(x)$ and $(g \circ f)(x)$

Use the graph to compute the following values:

a.
$$(g \circ f)(-4) =$$

b.
$$(f \circ g)(3) =$$

c.
$$(f \circ f)(-2) =$$

d.
$$(g \circ g)(3) =$$

e.
$$(g \circ f)(-5) =$$

The 2005 Dodge Durango 5.9L SUV has a city driving gasoline mileage rating of approximately 0.2 L/km.

The cost of gasoline is \$1.45/L.

- a) Write the volume of fuel used as a function of the distance driven
- b) Write the cost of fuel as a function of the volume
- c) Create a composition function to give the cost as a function of distance.

HW: pg. 507 #1-5,7,8