Given the functions find $(f+g)(x)$ and $(f-g)(x)$.
$f(x)=2 x-7$
$g(x)=x+3$
$f(x)=x^{2}+1$
$g(x)=x^{2}+2 x-1$

What is:
$(f+g)(3)$
$(f-g)(1)$

Here are the graphs of the functions given:

Using the graphs, determine:
$(f+g)(0)$
$(f-g)(1)$

$(f+g)(0)$
$(f-g)(1)$

In the graph below f is the line and g is the absolute value graph. Sketch $(f+g)(x)$ and $(f-g)(x)$.

Students at the school decide they are going to sell t-shirts as a fund raising activity. If their fixed costs are $\$ 250$, the cost per t-shirt is $\$ 4$, and they intend to sell shirts for $\$ 10$ per shirt,
a) Write an equation for cost (C), revenue (R), and profit (P)
b) How many t-shirts do they need to sell to make a profit?
c) What is the domain and range of the functions in this problem?

Find $(f \bullet g)(x)$ and state the domain and range if $f(x)=\sqrt{x+3}$ and $g(x)=\sqrt{x-3}$.

Find $\left(\frac{f}{g}\right)(x)$ and state the domain and range if $f(x)=x+2$ and $g(x)=x^{2}+9 x+14$

With each swing a pendulum loses 3% of its amplitude due to friction. If the amplitude can be modelled by $A(t)=15 \cos (t)$ without friction, create a function to model the actual amplitude of the pendulum. How long will it be before the pendulum's amplitude is less than 12 ft ?
$(f \pm g)(x)$ HW: pg. 483 \#1-4,6-8,11-13

